熱門

X

未來·無限

簡介

GIST

主持人:香港電台公共事務組

身處世界關鍵的轉折,需要眼界和知識。
每個星期六,我們會邀請一位科學家,介紹在其研究範疇內一個正在影響世界未來發展、我們不可不知的趨勢,以專業和視野來培養具前瞻的預測與洞察力。
星期六早上,讓我們看遠一點,看到未來的無限可能。

監製: 林嘉瑜
製作: 張璟瑩

最新

LATEST
21/12/2024

利用新型望遠鏡研究超新星殘骸

嘉賓:香港大學物理學系副教授吳志勇

「大家好,我是吳志勇教授,我是港大物理學系副教授,我是一位天文學家,我主要觀測宇宙裏面比較極端的天體,譬如一些超新星爆炸的遺骸,以及脈衝星、脈衝星風雲等。  其實一般的星星,大家看見天上的星星和人類一樣有壽命,它完結後會變成另一種天體,例如太陽過多五十億年後會變成白矮星,我研究的是大質量的行星,八至十倍太陽質量的行星,它們燒光燃料之後,就會有很劇烈的超新星爆炸,剩下的可能變成黑洞或者變成脈衝星,我研究的方向主要是觀測這些超新星的遺骸,以及這些脈衝星,我會用國際上主要的太空望遠鏡,以及射電望遠鏡去觀測這些星的遺骸。 這些星的特別之處就是它們其實好細小,好像香港島這樣細小,但是質量很大,即是想像將太陽置於香港這樣細小的地方。 」


這些如此緻密的星體,對於科學家研究一些極端的重力、磁場等會有很大幫助,因為在地球上,永遠提供不到這樣極端的環境去進行物理學研究。

 「我研究的最主要範疇是看這些脈衝星上面,它們有很強的磁場,它們亦轉得很快,那麼它們會將粒子加速到很高能量,這樣在宇宙會形成所謂的宇宙射線。 宇宙射線被發現超過一百年,它們的來源是怎樣的,人們未太清楚。 目前最主流的學說,是指這些在銀河系的粒子會在脈衝星附近,以及在超新星遺骸的擊波裏面加速,它們來到地球之後形成了高能的粒子,其實對我們的生活也會有一點影響。 譬如我們常用到的碳-14年代測定法,是由於這些高能粒子不斷撞擊地球的碳-14原子,不斷產生碳14,才做到測定時間。」

 傳統天文學幾千年以來,都是觀測可見光為主,不過,最近的一百年間,已經超越了可見光,進而透過電磁波,甚至中微子等理解天體。 

「即是由射電一路到可見光、紅外、紫外、X射線、伽瑪射線都有,現時這被稱為多波段觀測,可觀察一個星體不同波段發出來的強度、能量,估計它背後的物理狀況,但新的趨勢不止多波段,除了電磁波之外,還有其他中微子、重力波等,或者宇宙射線,即是將幾個不同方向組合起來去觀測天體,它的背後有甚麼正在發生,這超越了可見光的範圍,亦超越了電磁波的範圍,有些東西是從電磁波中觀察不到的,例如中微子,現在我們已經有中微子天文台。譬如我研究的脈衝星,如果兩粒脈衝星撞在一起時,它們會產生很強的引力波,事實上現時已觀測到有幾個這樣的事件,而重要性是在於其實很多重的金屬會在這個過程中誕生,估計有大部分重的元素會在超新星爆炸的時候誕生,以及會在兩個脈衝星碰撞的時候誕生,這些都會導致很強烈的引力波,這亦都可以解釋到很多重的元素,在宇宙如何誕生,以及在地球觀測到的,例如金、銀、銅,這些重的元素是如何在宇宙中產生。」

 
未來影響天文學發展的一個重要因素,在於學者會運用到不少新型的望遠鏡。

「今後五至十年,會陸續有很多新的望遠鏡落成,最主要譬如我從事射電的方向,有一個名為平方公里列陣,具備多支望遠鏡,會在南非和澳洲分別建設多支望遠鏡,規模屬史無前例的大。它當初的計劃是收集面積達一平方公里,它會每天觀察天上星的變化。 這樣大的望遠鏡會收集到很多數據,可能一秒鐘一個terabyte (TB),一個一TB的硬碟,一秒鐘就填滿了,這樣大量的數據究竟如何儲存和分析,是未來我們關注的趨勢,以及未來研究的課題。 現時科學家嘗試用人工智能的辦法去分析,可能只會保存有用的數據,即時篩選,否則很快就填滿硬碟,數據產生速度太快,難以保存太多。 現時新型的望遠鏡會每日觀天,看星的光度有何變化,這亦是未來的大方向,因為現在我們有這樣的儀器,有條件和運算能力,可以每晚觀天,每晚拍一張照片,然後看光度有何變化,這是屬於Time-Domain Astronomy,即是時間性的天文學。從前並不是這樣的,從前可能隔幾十年,才有人拍某個天區的一張照片,現在可以做得很頻密。」

21/12/2024 - 足本 Full (HKT 09:20 - 09:30)

重溫

CATCHUP
X

建立「材料基因组」系統化了解不同建材性能

主持人:香港電台公共事務組

嘉賓: 香港青年科學院創院院士、香港城市大學建築學及土木工程學系教授劉特斌

「我的名字是劉特斌,現時是香港青年科學院創院院士、香港城市大學建築學及土木工程學系教授,最近也擔任了一個新的崗位,是城大創新學院的副院長。 我主要的研究關注新一代的建築材料,包括怎樣進行開發,現時已有很多建築材料,怎樣可以用一個很有系統的方法,處理老化的問題。 建築材料的開發或怎樣進行有效的維修,我們很需要去了解物料,用一個很基本的方法去了解它和環境之間的關係,所以我的主要研究方法英文稱為Molecular Dynamic Simulations,中文是分子動力學。」


透過分子動力學,學者可以微觀地研究建築材料與環境之間如何相互影響,同時亦有助探究有何針對性的方法,應對建築物老化問題。 


「建築物或者建築材料的老化問題,其實和人一樣,都會隨時間老去,老去的意思就是一些機能會比起初的時候差。建築物有這個情況的話,我們會覺得有點危險,因為我們不想住在一棟建築物,但它的功能經已減弱,強度不足,未能達到設計的限度就已經出現問題,例如出現裂縫,所以我們很需要去了解建築材料和環境之間的關係。


有些關係其實是必然存在的,如今我們的理解其實不太清楚,譬如建築材料與溫度、水份之間的關係,會怎樣影響到結構或物料本身的演化,其實如果我們欠缺良好的分子動力學模擬,其實我們未必了解得到。 過往我們處理這些問題,其實很多時候也是利用一些實驗的方法,就好像我們煮食一樣, 可能有一個食譜,我告訴你以後,你希望有所改進,但是怎樣增減材料,可能是基於藝術家般的感覺,而不是真的從根本去了解出現個別問題時,一定要加入某一個材料,或者按某一個份量才可以解決到問題, 所以分子動力學可以讓我們因應老化問題,針對性地加入某些材料,以達成我們的目標。」


隨著電腦運算能力提高,加上人工智能發展迅速,專家未來可能不需要進行實驗,都可以有效率和有系統地了解到建築物料的性能。 


「如果刻意利用微觀方法去了解物質的機制,其實需要很大的電腦計算能力,正因為這幾年至十年間,人工智能的發展迅速,硬件和軟件都配備,我們需要很大量的計算能力,在這一刻才可以滿足到,所以我相信未來十年,當我們具備人工智能,將更加可以將微觀和宏觀世界連結起來。 


如果我們可以做到一個良好的多尺度模擬,將來從事物料研究和設計,就會變得很有系統,可能實驗都不需要做, 因為很當我們了解到分子、原子當中的互動,我們就會知道物料的性能,我們可能不需要再以實驗方式進行核證,因為計算出來的結果已經很精確。當然去到一刻,如果實驗都不需要,其實我們對分子、原子當中的機制,可能已經很徹底和精確。如果我們真的可以計算到一些很難才計算到的,過往未必處理到的,現時都處理得到,那麼我相信這件事在未來十年可以預見發生。 


如果每一個元素和材料,我們都可以利用電腦方法,計算它們的性能和特性的話,其實將來進行任何設計的時候,都會變得很有系統。這是一個很長遠的發展,做到一個材料基因組並不簡單,所以我相信未來十年,我們需要投放一些研究資源和努力,才可以達成一個很全面的材料基因组,可以用於不同的工程範圍,土木工程當然是其中一個有需要的範圍,我相信其他工程領域,包括機械工程、電子工程,都很需要如此有系統和效率去了解每種物質性能的方法,這是很重要的一步,我們需要達成。」


香港電台第一台

22/06/2024 - 足本 Full (HKT 09:20 - 09:30)